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Bioinformatics, as an interdisciplinary science, seeks to find various 
biological issues in molecular level using available techniques in computer 
science, mathematics, chemistry, physics and other relevant sciences. One 
part of this science concerns the sequences and proteins absorbing metals in 
which many softwares and servers are widely used for bioinformatics 
prediction. More than half of proteins in Protein Data Bank possess metals 
and thus it expected that most of these proteins are metalloproteins. Metals 
are necessary for proteins function and structure. Since metal ions are 
essential in too many biological functions, mainly in metalloproteins, finding 
metalloproteins is of great importance in the biological and medical fields. 
Metal binding site prediction is considered as a step in function assignment 
for new proteins. In this review, we tried to study softwares and servers 
which are found to be pioneer in finding metal binding sites in proteins and 
introduce them briefly. In this way, the importance of metal ions is explained 
and then the binding sites of proteins like CHDEs have been partly 
introduced.  
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1. Introduction 

*Many different metal ions like Cu2+, Zn2+, Mn2+, 
Fe2+, Ni2+ and Co2+ are micronutrients that are found 
to be essential for growth and metabolism of plants 
(Ideker et al., 2001; Frausto et al., 2001). High soil 
existential concentration of these ions is extremely 
toxic (Ideker et al., 2001; Sharma et al., 2009).  
Because of strength, accumulation and persistence of 
the ions in ecosystems, heavy metals have expected 
to receive special consideration (Ahluwalia et al., 
2007; Machado et al., 2008; Volesky, 2001).  Heavy 
metal referred to a chemical element with an atomic 
mass greater than 22 and a density greater than 5 
g/mL. 69 elements include in this classification, of 
which 16 are synthetic. Some of them even at very 
low concentrations are toxic to human beings (Ashok  
et al., 2006; Wang and Chen , 2006)copper (Cu), zinc 
(Zn), silver (Ag), lead (Pb), mercury (Hg), arsenic 
(As), cadmium (Cd), chromium (Cr), strontium (Sr), 
cesium (Cs), cobalt (Co), nickel (Ni), thallium (Tl), tin 
(Sn) and vanadium (V) are the most important heavy 
metals associated with environmental contamination 
(Byrne et al., 1980; Shore et al., 1987; Tubek et al., 
2008), and are shown to be dangerous for ecosystem 
(Wang and Chen, 2006). Generally metal ions 
classified in three groups include: essential, toxic, 

                                                
* Corresponding Author. 

radioactive and semi metal ions. Na, K, Mg, Ca, V, Mn, 
Fe, Co, Ni, Cu, Zn, Mo and W are known essential ions 
that are important for plants metabolism (Williams, 
2001; Ashok et al., 2009). Toxic ions (Hg, Cr, Pb, Cd, 
As, Sr, Ag, Si, Al, Tl) show no biological functions. 
Radioactive ions are also toxic for cells including U, 
Rn, Th, Ra, Am, Tc and semi metal ions (B, Si, Ge, As, 
Sb, Te, Po, At, Se) have distinct functions in plant 
metabolism (Ashok et al., 200; Nobuaki et al., 2002; 
Rhee et al., 1998) (Rhee et al., 1998). The main 
feature which has determined metals bioavailability 
and their destination is their ionic form. Most of 
heavy metals are categorized as cationic ions and 
this caused to their sorption to negative groups like 
cells (Saedi et al., 2013). Heavy metal ions possess 
high electrostatic attraction and their high binding 
affinities to sites that essential ions usually bind in 
cellular structures and caused to bio molecules 
structures disability leading replication defects, 
cancer and hereditary genetic disorders. Arsenate, 
for example, competes with phosphate and cadmium 
competes with zinc (Mehrasa et al., 2014). According 
to microarray analysis (Kawata et al., 2007; Passerini 
et al., 2006), six heavy metals (arsenic, cadmium, 
nickel, antimony, mercury and chromium) induce 
gene expression patterns similar to pattern induced 
by DMNQ (2.3-dimethoxy-1, 4-naphthoquinone), and 
caused oxidative damage through producing ROS 
and inactivating the cellular antioxidant system (Liu 
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et al., 2005; Mannazzu et al., 2000). Metalloproteins 
are diverse category of proteins which contain one 
or more metal ions in their conformation. Metal ions 
are fundamental to protein function and play many 
different regulatory, structural or catalytic roles 
(Christopher et al., 2002; Chance and Shi, 2008; 
Bertini and Cavallaro, 2010). For instance, zinc ions 
stabilize the structure of transcription factors like 
zinc fingers. In enzymes, metal ions are normally 
cofactors that increase catalytic activity 
(Christianson, 1991). There are also many different 
processes including apoptosis, aging and 
carcinogenesis that severely depend upon metal 
binding proteins. Finding metal binding sites in 
novel proteins considerably lead to recognition their 
functional characteristics and will clear metal related 
malfunctions. Recently, many different laboratory 
techniques have been proposed for identifying 
metalloproteins. X-ray absorption spectroscopy (HT-
XAS) for example (Shi et al., 2011), is able of 
discovering metalloproteinase with high reliability 
(Shi et al., 2005; Shi and Chance, 2011, Passerini et 

al., 2011). However, ligands which are related in 
binding the metal ions cannot be identified by this 
technique. Bioinformatics tools can considerably 
contribute to a detailed explanation of metal binding 
sites, as well as in scaling-up to proteome-wide 
analyses (Passerini et al., 2011; Degtyarenko, 2000; 
Sodhi et al., 2009). Motif based approaches, based on 
regular expression patterns or Pfam probabilistic 
models and applied for sequence based predictions 
on proteins(Passerini et al ., 2011; Shi et al ., 2011). 

These methods cannot identify new sites while 
regular expression patterns tend to be wholly 
specific with low coverage, and Pfam models are 
incomplete to known metal binding sites. Recently, 
some supervised learning techniques have been 
proposed for predicting the metal binding state of all 
residues in a sequence (Passerini et al., 2011; 
Gavanji et al., 2013). In this paper, we tried to 
introduce some useful servers and software’s for 
prediction and analysis of metal binding sites.  

2. Methodology 

There are many different servers and sofwares 
used to predict metal binding sites with high 
accuracy. Only running a program would not lead to 
prediction of the exact ions which we are looking for. 
There are many different methods by which these 
programs used to predict metal binding sites. In 
order to use any of them, it is necessary to be aware 
of the method of prediction and their results. Here, 
we studied some of this software’s and servers 
which are more useful and tried to explain them in 
brief. CHDE algorithm, for instance, is explained 
because of its importance in metal ion binding 
proteins and some more useful servers such as 
MetaRouter, Metalmine, Discovery Studion and 
metalDetector have been presented (Gavanji et al., 
2013). 

 2.1. MetaRouter 

MetaRouter is applied for identifying 
heterogeneous information concerning 
biodegradation which permits to administrating and 
extracting new data (Pazos et al., 2005). It is a 
practical application for laboratories which need to 
keeping data and extracting information out of it. 
This program is realized in Postgre SQL referred to 
standard language for relational databases and used 
client/server architecture, so it can be accessed quite 
easily only by having a web browser (Kanehisa et al., 
2004). MetaRouter is an application for laboratories 
operation in biodegradation and bioremediation 
which necessitate to maintain and consult public and 
private data, linked internally and with external 
databases, and also to extract new information from 
it. The system can be available and administrated 
through a web interface. The full featured system, 
except administration facilities, is freely available at 
(http://pdg.cnb.uam.es/MetaRouter) (Fulekar and 
Jaya, 2008; Pazos et al., 2005). 

2.2. MetalMine: a database of functional metal-

binding sites in proteins 

MetalMine is a very helpful database for 
discovery of metal binding sites. The significance of 
metal ions in life system through the emergence of 
terms such as Metallome and Metallomics is 
considerably clear (Nakamura et al., 2009; Jernigan 
et al., 1999). However, there is no complete list of 
metal binding proteins. A metal binding site is 
distinct, in this search, as a collection of metal ions 
coordinated by several amino acid residues with 
heteromolecules like cofactors, substrates and water. 
Structural Classification of Proteins, or SCOP for 
short (Murzin et al., 1995), is used for structural 
domains definition. A metal binding site family is 
distinct as homologous metal binding sites 
(Messerschmidt et al., 2001). In some cases, metal 
binding site may contain different amino acid 
residues from different structural folds. Therefore, 
metal binding site can be positioned at boundary of 
two domains in a single chain, or at the boundary of 
two protein subunits. The purpose of this program is 
to set up an organized list of functional metal 
binding sites (Nakamura et al., 2009). Routinely, 
extraction of metal binding sites from PDB database 
will result in many metal binding sites with no 
biological function which are typically the result of 
experimental conditions.  MetalMine seeks to 
exclude artificial coordination by manual curation 
(Andreini et al., 2009; Gasteiger et al., 2003). 

2.2.1. Method of use 

Each page has a top menu and a sidebar. From 
the top menu, one can contact pages for a 
description of the database, a BLAST search, and 
tutorial. The top page includes a text field and a 
search key to permit MetalMine to be searched using 
a PDB ID as a query. From the sidebar, users can look 
through the information of metal ions contained in 
MetalMine. Once one of the metal ions located in the 



Albert Gagnara / International Journal of Advanced and Applied Sciences, 1(7) 2014, Pages: 10-19 

12 
 

sidebar is chosen; a table of metal-binding sites will 
be shown. There are columns inside the table that 
list the names used to identify the metal-binding site, 
SCOP IDs of residues concerning the metal-binding 
site, the type and number of metal ions and residues, 
the representative PDB IDs, number of PDB files 
recognized for this site, whole number of sites found 
in the entire PDB, links to Wikipedia and Nice Zyme 
entries at ExPASy when available, and so on. By 
clicking on the name of a site one can see a list of all 
instances of the metalbinding site (Gasteiger et al., 

2003). This list contains columns that explain the 
PDB IDs, the residues and the heteromolecules like 
cofactors and Ligands (Herraez, 2006). Moreover, a 
Jmol window is existed to show the local metal-
binding structure when an instance of the metal-
binding site is distinct by clicking on the PDB ID 
(Punta and Ofran, 2008; Bernstein et al., 1977). On 
the right side of the Jmol window, more options are 
accessible for looking over the metal binding sites, 
such as a button for displaying the second layer of 
coordinating residues (Nakamura et al., 2009). 

2.2.2. Search by amino acid sequence 

In MetalMine, an amino acid sequence search can 
be applied via BLAST.  For this purpose, a series of 
the amino acid sequences from the PDB structures is 
put in MetalMine. Determining an amino acid 
sequence as a query, BLAST performs a sequence 
looking of the database for a match with the metal-
coordinating residues in MetalMine (Altschul et al., 
1990). Consequently, only the exact matches will be 
shown, and poor matches that their E-value is 
greater than 0.0001, are distinct as low reliability 
matches. The output of a BLAST search includes the 
amino acid sequence used as the query, the hit 
residue highlighted with magenta or light cyan for a 
regular or low-reliability match, respectively, 
followed by a list of matching residues with links to 
the metal-binding sites contained in MetalMine 
(Babor et al., 2008).  The BLAST search function in 
MetalMine can be applied as a device to predict 
metal-binding residues in amino acid sequences. One 
can use threading model and force field model to 
predict metal binding residues based on structural 
information (Goyal and Mande, 2008; Sodhi et al., 
2004). An empirical method is based the comparing 
holo-apo pairs of known metal binding sites and its 
results have very high reliability. Also the de novo 
approach based on a sequence using a machine-
learning method has been developed, (Lippi et al., 
2008) while its prediction ability, compared with the 
structure based predictions, appears to be limited 

(Gavanji et al., 2013; Sodhi et al., 2011). 

2.3. CHDEs 

The exact prediction of zinc-binding proteins and 
zinc-binding sites from sequences are of attention of 
researchers. Zinc is considered as the most common 
transition metals bound to proteins. Cys, His, Asp 
and Glu (CHDE) are four amino acids which account 

for almost 98% of all residues that bind to zinc. 
Among four mentioned amino acids, Cys and His 
(CH) are dominant, which account for almost 84% of 
all zinc-binding residues. One zinc atom binds to 
three or four amino acid residues. Zinc bound by 
three amino acid residues are often catalytic zinc and 
those bound by four are usually structural zinc (Shu 
et al., 2008). SVM-based predictor and a homology-
based predictor are two method of CHDE. In the 
SVM-based predictor, CHDEs could be selected in 
both training set and test set and encode into single-
site vectors and pair-based vectors which display a 
window of residues in the center of each selected 
CHDE or a pair of selected CHDEs respectively. The 
available Gist SVM package (Sodhi et al., 2011; Punta 
and Ofran, 2008) could be used for implementing 
SVM. SVM predictions on individual selected 
residues obtained through combination of the 
predictions by using single-site vectors and pair-
based vectors through a gating network. Zinc 
binding sites can be predicted from amino acid 
sequences by combining SVM predictions and 
homology-based predictions. Shu and his coworkers 
(2008) applied this method and predicted Cys, His, 
Asp and Glu with 75% accuracy at 50% recall level, 
when they tested on a non-redundant set of PDB 
containing 2727 unique protein chains. The success 
rate could be even higher, if homologues were 
predicted: for Cys, His, Asp and Glu with 76% 
accuracy (90% for Cys and His) at the 70% recall 
level (Shu et al., 2008).  The predictions were so 
reliable so that some occasional presumed errors of 
PDB concerning zinc-binding had been found (Shu et 
al., 2008; Pavlidis et al., 2004).  

2.3.1. Metal binding sites using 'CHED' algorithm 

The 'CHED' algorithm is capable to predict 3D 
intra-chain protein binding sites in transition metals 
such as Zn, Fe, Mn, Cu, Ni, Co, and Ca and Mg sites 
that can be substituted by a transition metal. The 
algorithm looks for a triad of amino acids composed 
of 4 residue types (Cys, His, Glu, Asp) which possess 
ligand atoms in specific distances. It permits one 
target residue to rotate in rotamer space, 
considering structural rearrangements that may 
arise upon metal binding. A binding site is 
considered to be accurate if one or more correct 
amino acid ligands have been predicted (Shu et 

al.,2008; Sodhi et al., 2004; Mika and Rost, 
2003).Two algorithms are used to filter out false 
positives: MILD FILTER which is based on the 
frequency of hits, yields high sensitivity. STRINGENT 
FILTER which uses decision tree and support vector 
machine technology, yields high selectivity (Shu et 

al., 2008; Nanjiang et al., 2008), 

2.4. Metal Detector Predicts v2.0 software 

Metal detector 2.0 predicts binding to transition 
metals (Passerini et al., 2011), which create about 
66% of the PDB metallo-chains and consider iron 
and zinc as the two most basic ions in cellular 
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functioning. Metal Detector uses protein sequences 
as input for identification of CYS and HIS which have 
role in transition metal protein binding sites. One of 
its main abilities is predicting which residues are 
mutually responsible in the coordination of the same 
metal ion. The server is available at 
http://metaldetector.dsi.unifi.it/v2.0/  (Frasconi and 
Passerini, 2009; Passerini et al., 2011). Focusing on 
CYS and HIS only, about 74% transition metal 
ligands are covered. For computational efficiency 
reasons, it is supposed that each ligand binds just 
one ion. This is almost always the case for CYS and 

HIS. It is not a full 3D description of the sites 
geometry, with angles and distances, but rather the 
prediction of the connection between ions and their 
ligands. Bonding condition of each CYS and HIS is 
predicted in two states including metal-bound or not 
(Lippi et al., 2008; Shi et al., 2011). When the chain is 
not belonged to a metalloprotein, bonding state for 
CYS is predicted in three states as disulfide-bound, 
metal-bound and free. Chains with both disulfide 
bridges and metal binding sites are very uncommon 
(less than 3%) (Fig. 1). 

 

 
 

Fig. 1: Metal binding prediction subtasks. (a): given sequence; (b) candidate ligands (CYS and HIS) are assigned bonding state 
(boldface for metal binding); (c) metal-binding residues are grouped to form binding site configurations (Passerini et al., 

2001) 
 

2.4.1. Method of use 

In the first step, SVM-HMM is used to predict 
metal bonding state of each CYS and HIS. The 
algorithm uses dynamic programming to find the 
best general bonding state assignment to all CYS and 
HIS in the input chain. After that, residues predicted 
to be ligands are collected together to shape binding 
sites (Sodhi et al., 2004; Bakir et al., 2007). This 
could be achieved throughan ad-hoc algorithm 
whichexploits the assumption that each ligand binds 
exactly one ion. The web interface permits to decide 
between three different settings, corresponding to 
the three different paths represented in Figure 2: no 
prior knowledge (default operation mode); (ii) the 
chain is identified to belong to a metalloprotein; (iii) 
the chain is identified to belong to a metalloprotein, 
and the user can also provide the bonding state of 
each CYS and HIS. Output is either accessible on a 
separate web page or delivered by through e-mail. 
Residues predicted to match the same ion will share 
the same identifier (Passerini et al., 2006).  Every 

identifier is an integer ranging from 1 to 4 indicating 
maximum number of binding sites that can be 
predicted (Ceroni et al., 2006). Its value shows no 
particular biochemical semantics but lower values 
relate to a higher level of confidence for the 
predictor. Figure 2 shows a web browser output for 
PDB entry 1t3qA (Shu et al., 2008; Lippi et al., 2008). 

2.5. PredZinc 

PredZinc is a program for predicting zinc-binding 
sites in proteins from their amino acid sequences. 
The program is written in c/c++ and bash shell 
scripts (Shu et al., 2008; Vallee and Auld, 1990). 

Currently, PredZinc can be run on Linux and 
Windows (with Cygwin).  PredZinc is copyrighted (c) 
to Nanjiang Shu, Structural Chemistry, Stockholm 
University, Sweden and is free for academic use (Shu 
et al., 2008; Shore et al .,1978). The main focus is on 
predicting four types of amino acids, i.e. cysteines, 
histidines, asparates and glutamates (CHDE) 
(Kristen  et al., 2012; Maurer-Stroh et al ., 2013), in 
order to cover most residues of interest while 
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enabling reasonable prediction accuracy. A five-fold 
cross-validation indicates that this server predicts 
zinc-binding Cys and His with 76% precision at 60% 
recall and on the chain level 60% precision at 60% 
recall (Menchetti et al ., 2006; Passerini et al .,2006). 

 
 
 
 

 

 
Fig. 2: Web browser output of MetalDetector for PDB entry 1t3qA 

 

2.5.1. Method of use 

Sequences in FASTA format or Bare sequence 
format (just lines of sequence data, without 
definition) or any sequence format supported by 
EMBOSS Seqret (EMBOSS Seqret reads and writes 

(returns) sequences), are used in this program. After 
submitting the sequence, the results will be ready for 
download in the coming webpage shortly (Fig. 3). 
Under Advanced options, you may also choose the 
thresholds of recall and precision as well as the 
training set (Shu et al., 2004). 

 
Fig. 3: Output of PrediZinc webserver 1Predicted zinc-binding (ZB) residues are highlighted in red and with larger font size. 
Cys, His, Asp and Glu are bolded. Residues are predicted as zinc-binding if the score is >= 0.450. Abbreviations: CYS: cystein, 

HIS: histidine, ASP: aspartate, GLU: glutamate (Shu et al., 2004) 
 

2.6. The PSIPRED structure analysis workbench 

PSIPRED is a simple and accurate secondary 
structure prediction method, incorporating two 
feed-forward neural networks which perform an 
analysis on output obtained from PSI-BLAST 
(Position Specific Iterated - BLAST) (Jones and 
Swindells, 2002; McGuffin et al ., 2000; Buchan et al., 
2013). Using a very stringent cross validation 
method to evaluate the method's performance, 
PSIPRED 3.2 achieves an average Q3 score of 81.6% 
(Brylinski et al., 2011). PSIPRED 2.0 achieved an 
average Q3 score of 80.6% across all 40 submitted 
target domains with no obvious sequence similarity 
to structures present in PDB, which ranked PSIPRED 
top out of 20 evaluated methods. UCL-CS 

Bioinformatics Web Servers 
(http://bioinf.cs.ucl.ac.uk/structure) (Sodhi et al., 
2004; McGuffin et al., 2000). 

2.7. FINDSITE-metal server 

FINDSITE-metal is an extended version of 
FINDSITE that predicts metal-binding sites, residues 
and binding metal preferences from evolutionarily 
related templates discovered by threading 
(http://cssb.biology.gatech.edu/findsite-metal) 
(Brylinski et al., 2011). Moreover, it uses machine 
learning to increase the prediction accuracy,mainly 
against low-to-moderate quality protein structures. 
So, crystal structures as well as protein models can 
be used as the targets. The server accepts only single 
protein chains 40-400 residues in length. Only the 
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ATOM part is parsed and unusual residues are 
removed. PROSPECTOR_3, SP3 and Sparks2 
threading algorithms are used to recognize 
evolutionarily related templates. One can upload 
either the crystal structure or the predicted model of 
his target. Estimated TM-score must be in the range 
of 0.0 to 1.0 (Shu et al., 2008; Citiulo et al., 2012).  

2.8. GRID 

GRID is a computational process which verifies 
energetically favorable binding sites on proteins 
consisting known structure (Von Itzstein et al., 1993; 
Kastenholz et al., 1977). It can be used for studying 
individual molecules like drugs, molecular arrays 
such as membranes or crystals, and macromolecules 
including proteins, nucleic acids, glycoproteins or 
polysaccharides. Several different molecules can be 
processed one by one (Ortuso et al., 2006; Wade and 
Goodford, 1993; Carosati, et al., 2004).  

2.9. Disulfide 

The server is for predicting the disulfide bonding 
state of cysteines and their disulfide connectivity 
starting from sequence alone. Disulfide bridges play 
a key role in the stabilization of the folding process 
for some proteins. Prediction of disulfide bridges 
from sequence is very useful for studying structural 
and functional features of particular proteins 
(Frasconi and Passerini, 2002; Ceroni et al., 2003). 
This server predicts disulfide patterns through two 
computational steps: (1) the disulfide bonding state 
of each cysteine is predicted by a BRNN-SVM binary 
classifier; (2) those cysteines that are recognized to 
contribute in the construction of bridges are paired 
by a Recursive Neural Network to obtain a 
“connectivity pattern” (Vullo and Frasconi, 2004; 
Frasconi and Passerini, 2009). 

 

 
Table 1: Summary of softwares and servers presented in this study 

No Software/Server Introduction Link 

1 MetaRouter 
Identifying heterogenous information 

related to biodegradation 
http://pdg.cnb.uam.es/MetaRouter 

2 MetalMine Finding metal binding sites 
http://metalmine.naist.jp/metalmine009/inde

x.html 

3 Discovery Studio  
http://accelrys.com/products/discovery-

studio/ 
4 Metaldetector predicting binding to transition metals http://metaldetector.dsi.unifi.it/ 

5 PredZinc 
Predicting zinc-binding sites in proteins 

from their amino acid sequences 
http://casio.fos.su.se/server/predzinc/index.p

hp?about=predzinc 
6 PSIPRED secondary structure prediction http://bioinf.cs.ucl.ac.uk/index.php?id=779 

7 FINDSITE-metal 
Predicting metal-binding sites, residues 

and binding metal preferences from 
evolutionarily related templates 

http://cssb.biology.gatech.edu/findsite-metal 

8 GRID 
Determining energetically favorable 

binding sites on proteins with known 
structure 

https://www.personal.reading.ac.uk/~sas97s
ca/Metal%20binding%20sites.htm 

9 Disulfide 
Predicting the disulfide bonding state of 

cysteines and their disulfide connectivity 
http://disulfind.dsi.unifi.it/ 

    

3. Discussion 

Metal ions play a significant role in living 
organisms. About one third of proteins have to bind 
metal for their stability and/or function. In this 
review, current sequence based and structure based 
methods for metal binding site prediction with 
highlighting the CHED methods of prediction are 
proposed. SVM-based predictor and a homology-
based prediction presented as two method of CHDE. 
MetaRouter is a suitable system for bioremediation 
studies which could identify heterogeneous 
information useful for biodegradation. Finding 
functional metal binding sites is the final aim of 
MetalMine. Extracting metal binding sites from PDB 
database will lead to numerous binding sites lacking 
biological function. Using MetalMine, we could set up 
a list of functional binding sites which is not as 
complex as the data obtained from PDB database. 
Metal detector predicts transition metals with high 
speed and is able to predict which residues are 

jointly concerned in the coordination of the same 
metal ions. PrediZinc is another server which focuses 
on CHDE and predicts zinc binding sites with high 
accuracy. GRID determines favorable binding sites of 
proteins with known structure. Disulfide bridges are 
extremely importance in folding process of proteins 
and for finding them. Disulfide is a good instance of a 
simple server which predicts bonding state of 
cycteins from protein sequence. 

4. Conclusions 

In natural proteins, metal ions play a variety of 
roles, including nucleophilic catalysis, electron 
transfer and the stabilization of protein structure 
(Andreini et al., 2008; Ukaegbu et al., 2006). In this 
review, we introduced some useful software’s and 
websites for predicting metal ion binding sites in 
proteins. Conserved structures and sequences are 
used for identification of metal ion binding residues. 
Sequence based and structure based methods for 
metal binding site predictions had been reviewed in 
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this study. The CHED method of prediction from 
protein structures and translated gene sequences 
were described in detail respectively, as well as their 
web server applications. There are so many 
software’s which predict metal binding ions, but they 
are not as much as necessary and still many 
functional sites in proteins are not identified and 
need to be designed and improved accordingly. 
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